Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Cubic Szeg\h{o} Equation with a Linear Perturbation (1508.01500v1)

Published 6 Aug 2015 in math.AP

Abstract: We consider the following Hamiltonian equation on the $L2$ Hardy space on the circle $S1$ , $$i\partial_ t u = \Pi(|u|^ 2 u) + \alpha(u|1) , \alpha \in\mathbb{R} ,$$ where $\Pi$ is the Szeg\H{o} projector. The above equation with $\alpha= 0$ was introduced by G{\'e}rard and Grellier as an important mathematical model [5, 7, 3]. In this paper, we continue our studies started in [22], and prove our system is completely integrable in the Liouville sense. We study the motion of the singular values of the related Hankel operators and find a necessary condition of norm explosion. As a consequence, we prove that the trajectories of the solutions will stay in a compact subset, while more initial data will lead to norm explosion in the case $\alpha>0$.

Summary

We haven't generated a summary for this paper yet.