2000 character limit reached
A density problem for Sobolev spaces on planar domains (1508.01400v1)
Published 6 Aug 2015 in math.CA, math.AP, math.CV, and math.FA
Abstract: We prove that for a bounded simply connected domain $\Omega\subset \mathbb R2$, the Sobolev space $W{1,\,\infty}(\Omega)$ is dense in $W{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover, we show that if $\Omega$ is Jordan, then $C{\infty}(\mathbb R2)$ is dense in $W{1,\,p}(\Omega)$ for $1\le p<\infty$.