Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise best approximation results for Galerkin finite element solutions of parabolic problems (1508.01165v2)

Published 5 Aug 2015 in math.NA

Abstract: In this paper we establish a best approximation property of fully discrete Galerkin finite element solutions of second order parabolic problems on convex polygonal and polyhedral domains in the $L\infty$ norm. The discretization method uses of continuous Lagrange finite elements in space and discontinuous Galerkin methods in time of an arbitrary order. The method of proof differs from the established fully discrete error estimate techniques and for the first time allows to obtain such results in three space dimensions. It uses elliptic results, discrete resolvent estimates in weighted norms, and the discrete maximal parabolic regularity for discontinuous Galerkin methods established by the authors in [16]. In addition, the proof does not require any relationship between spatial mesh sizes and time steps. We also establish a local best approximation property that shows a more local behavior of the error at a given point.

Summary

We haven't generated a summary for this paper yet.