Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Multiple Importance Sampling for Gaussian Processes (1508.01050v2)

Published 5 Aug 2015 in stat.CO

Abstract: In applications of Gaussian processes where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. Normally, this is done by means of standard Markov chain Monte Carlo (MCMC) algorithms. Motivated by the issues related to the complexity of calculating the marginal likelihood that can make MCMC algorithms inefficient, this paper develops an alternative inference framework based on Adaptive Multiple Importance Sampling (AMIS). This paper studies the application of AMIS in the case of a Gaussian likelihood, and proposes the Pseudo-Marginal AMIS for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios and remains competitive for moderately large dimensional parameter spaces.

Summary

We haven't generated a summary for this paper yet.