Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group (1508.00714v2)

Published 4 Aug 2015 in math.CA, math.AP, and math.FA

Abstract: We prove Hardy inequalities for the conformally invariant fractional powers of the sublaplacian on the Heisenberg group $\mathbb{H}n$. We prove two versions of such inequalities depending on whether the weights involved are non-homogeneous or homogeneous. In the first case, the constant arising in the Hardy inequality turns out to be optimal. In order to get our results, we will use ground state representations. The key ingredients to obtain the latter are some explicit integral representations for the fractional powers of the sublaplacian and a generalized result by M. Cowling and U. Haagerup. The approach to prove the integral representations is via the language of semigroups. As a consequence of the Hardy inequalities we also obtain versions of Heisenberg uncertainty inequality for the fractional sublaplacian.

Summary

We haven't generated a summary for this paper yet.