Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Well-posedness and Gevrey Analyticity of the Generalized Keller-Segel System in Critical Besov Spaces (1508.00117v2)

Published 1 Aug 2015 in math.AP

Abstract: In this paper, we study the Cauchy problem for the generalized Keller-Segel system with the cell diffusion being ruled by fractional diffusion: \begin{equation*} \begin{cases} \partial_{t}u+\Lambda{\alpha}u-\nabla\cdot(u\nabla \psi)=0\quad &\mbox{in}\ \ \mathbb{R}n\times(0,\infty), -\Delta \psi=u\quad &\mbox{in}\ \ \mathbb{R}n\times(0,\infty), u(x,0)=u_0(x), \ \ &\mbox{in}\ \ \mathbb{R}n. \end{cases} \end{equation*} In the case that $1<\alpha\leq 2$, we prove local well-posedness for any initial data and global well-posedness for small initial data in critical Besov spaces $\dot{B}{-\alpha+\frac{n}{p}}_{p,q}(\mathbb{R}{n})$ with $1\leq p<\infty$, $1\leq q\leq \infty$, and analyticity of solutions for initial data $u_{0}\in \dot{B}{-\alpha+\frac{n}{p}}_{p,q}(\mathbb{R}{n})$ with $1< p<\infty$, $1\leq q\leq \infty$. Moreover, the global existence and analyticity of solutions with small initial data in critical Besov spaces $\dot{B}{-\alpha}_{\infty,1}(\mathbb{R}{n})$ is also established. In the limit case that $\alpha=1$, we prove global well-posedness for small initial data in critical Besov spaces $\dot{B}{-1+\frac{n}{p}}_{p,1}(\mathbb{R}{n})$ with $1\leq p<\infty$ and $\dot{B}{-1}_{\infty,1}(\mathbb{R}{n})$, and show analyticity of solutions for small initial data in $\dot{B}{-1+\frac{n}{p}}_{p,1}(\mathbb{R}{n})$ with $1<p<\infty$ and $\dot{B}{-1}_{\infty,1}(\mathbb{R}{n})$, respectively.

Summary

We haven't generated a summary for this paper yet.