2000 character limit reached
Ballistic Motion in One-Dimensional Quasi-Periodic Discrete Schrödinger Equation (1507.08909v4)
Published 31 Jul 2015 in math-ph, math.AP, math.MP, and math.SP
Abstract: For the solution $q(t)=(q_n(t)){n\in\mathbb Z}$ to one-dimensional discrete Schr\"odinger equation $${\rm i}\dot{q}_n=-(q{n+1}+q_{n-1})+ V(\theta+n\omega) q_n, \quad n\in\mathbb Z,$$ with $\omega\in\mathbb Rd$ Diophantine, and $V$ a small real-analytic function on $\mathbb Td$, we consider the growth rate of the diffusion norm $|q(t)|{D}:=\left(\sum{n}n2|q_n(t)|2\right){\frac12}$ for any non-zero $q(0)$ with $|q(0)|{D}<\infty$. We prove that $|q(t)|{D}$ grows {\it linearly} with the time $t$ for any $\theta\in\mathbb Td$ if $V$ is sufficiently small.