Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ballistic Motion in One-Dimensional Quasi-Periodic Discrete Schrödinger Equation (1507.08909v4)

Published 31 Jul 2015 in math-ph, math.AP, math.MP, and math.SP

Abstract: For the solution $q(t)=(q_n(t)){n\in\mathbb Z}$ to one-dimensional discrete Schr\"odinger equation $${\rm i}\dot{q}_n=-(q{n+1}+q_{n-1})+ V(\theta+n\omega) q_n, \quad n\in\mathbb Z,$$ with $\omega\in\mathbb Rd$ Diophantine, and $V$ a small real-analytic function on $\mathbb Td$, we consider the growth rate of the diffusion norm $|q(t)|{D}:=\left(\sum{n}n2|q_n(t)|2\right){\frac12}$ for any non-zero $q(0)$ with $|q(0)|{D}<\infty$. We prove that $|q(t)|{D}$ grows {\it linearly} with the time $t$ for any $\theta\in\mathbb Td$ if $V$ is sufficiently small.

Summary

We haven't generated a summary for this paper yet.