Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Response-Time-Optimised Service Deployment: MILP Formulations of Piece-wise Linear Functions Approximating Non-linear Bivariate Mixed-integer Functions (1507.08834v3)

Published 31 Jul 2015 in cs.NI and cs.DC

Abstract: A current trend in networking and cloud computing is to provide compute resources at widely dispersed places; this is exemplified by developments such as Network Function Virtualisation. This paves the way for wide-area service deployments with improved service quality: e.g, a nearby server can reduce the user-perceived response times. But always using the nearest server can be a bad decision if that server is already highly utilised. This paper formalises the two related problems of allocating resources at different locations and assigning users to them with the goal of minimising the response times for a given number of resources to use -- a non-linear capacitated facility location problem with integrated queuing systems. To efficiently handle the non-linearity, we introduce five linear problem approximations and adapt the currently best heuristic for a similar problem to our scenario. All six approaches are compared in experiments for solution quality and solving time. Surprisingly, our best optimisation formulation outperforms the heuristic in both time and quality. Additionally, we evaluate the influence ot resource distributions in the network on the response time: Cut by half for some configurations. The presented formulations are applicable to a broader optimisation domain.

Citations (13)

Summary

We haven't generated a summary for this paper yet.