Topological vortices in generalized Born-Infeld-Higgs electrodynamics (1507.08793v1)
Abstract: A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via introduction of three non-negative functions depending only in the Higgs field, namely, $G(|\phi|)$, $w(|\phi|) $ and $V(|\phi|)$. A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows to minimize the system energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models such that a generalized version of Maxwell-Higgs electrodynamics is recovered in a certain limit of the theory.