Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilayer Network of Language: a Unified Framework for Structural Analysis of Linguistic Subsystems (1507.08539v1)

Published 30 Jul 2015 in cs.CL

Abstract: Recently, the focus of complex networks research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we propose the introduction of multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax, co-occurrence and its shuffled counterpart) and a subword level (syllables and graphemes) network layers, from five variations of original text (in the modeled language). The obtained results suggest that there are substantial differences between the networks structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.

Citations (53)

Summary

We haven't generated a summary for this paper yet.