Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Twisted Gabidulin Codes (1507.07855v3)

Published 28 Jul 2015 in math.CO, cs.IT, and math.IT

Abstract: Let $\mathcal{C}$ be a set of $m$ by $n$ matrices over $\mathbb{F}_q$ such that the rank of $A-B$ is at least $d$ for all distinct $A,B\in \mathcal{C}$. Suppose that $m\leqslant n$. If $#\mathcal{C}= q{n(m-d+1)}$, then $\mathcal{C}$ is a maximum rank distance (MRD for short) code. Until 2016, there were only two known constructions of MRD codes for arbitrary $1<d<m-1$. One was found by Delsarte (1978) and Gabidulin (1985) independently, and it was later generalized by Kshevetskiy and Gabidulin (2005). We often call them (generalized) Gabidulin codes. Another family was recently obtained by Sheekey (2016), and its elements are called twisted Gabidulin codes. In the same paper, Sheekey also proposed a generalization of the twisted Gabidulin codes. However the equivalence problem for it is not considered, whence it is not clear whether there exist new MRD codes in this generalization. We call the members of this putative larger family generalized twisted Gabidulin codes. In this paper, we first compute the Delsarte duals and adjoint codes of them, then we completely determine the equivalence between different generalized twisted Gabidulin codes. In particular, it can be proven that, up to equivalence, generalized Gabidulin codes and twisted Gabidulin codes are both proper subsets of this family.

Citations (102)

Summary

We haven't generated a summary for this paper yet.