Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The proximal distance algorithm (1507.07598v1)

Published 27 Jul 2015 in math.OC and cs.DS

Abstract: The MM principle is a device for creating optimization algorithms satisfying the ascent or descent property. The current survey emphasizes the role of the MM principle in nonlinear programming. For smooth functions, one can construct an adaptive interior point method based on scaled Bregmann barriers. This algorithm does not follow the central path. For convex programming subject to nonsmooth constraints, one can combine an exact penalty method with distance majorization to create versatile algorithms that are effective even in discrete optimization. These proximal distance algorithms are highly modular and reduce to set projections and proximal mappings, both very well-understood techniques in optimization. We illustrate the possibilities in linear programming, binary piecewise-linear programming, nonnegative quadratic programming, $\ell_0$ regression, matrix completion, and inverse sparse covariance estimation.

Citations (12)

Summary

We haven't generated a summary for this paper yet.