Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity

Published 27 Jul 2015 in math.OC, cs.LG, and stat.ML | (1507.07595v2)

Abstract: We study distributed optimization algorithms for minimizing the average of convex functions. The applications include empirical risk minimization problems in statistical machine learning where the datasets are large and have to be stored on different machines. We design a distributed stochastic variance reduced gradient algorithm that, under certain conditions on the condition number, simultaneously achieves the optimal parallel runtime, amount of communication and rounds of communication among all distributed first-order methods up to constant factors. Our method and its accelerated extension also outperform existing distributed algorithms in terms of the rounds of communication as long as the condition number is not too large compared to the size of data in each machine. We also prove a lower bound for the number of rounds of communication for a broad class of distributed first-order methods including the proposed algorithms in this paper. We show that our accelerated distributed stochastic variance reduced gradient algorithm achieves this lower bound so that it uses the fewest rounds of communication among all distributed first-order algorithms.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.