Papers
Topics
Authors
Recent
Search
2000 character limit reached

Strong averaging along foliated Lévy diffusions with heavy tails on compact leaves

Published 27 Jul 2015 in math.PR | (1507.07530v3)

Abstract: This article shows a strong averaging principle for diffusions driven by discontinuous heavy-tailed L\'evy noise, which are invariant on the compact horizontal leaves of a foliated manifold subject to small transversal random perturbations. We extend a result for such diffusions with exponential moments and bounded, deterministic perturbations to diffusions with polynomial moments of order $p\geq 2$, perturbed by deterministic and stochastic integrals with unbounded coefficients and polynomial moments. The main argument relies on a result of the dynamical system for each individual jump increments of the corresponding canonical Marcus equation. The example of L\'evy rotations on the unit circle subject to perturbations by a planar L\'evy-Ornstein-Uhlenbeck process is carried out in detail.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.