Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hydrodynamical spectral evolution for random matrices (1507.07274v1)

Published 27 Jul 2015 in math-ph, math.MP, and math.PR

Abstract: The eigenvalues of the matrix structure $X + X{(0)}$, where $X$ is a random Gaussian Hermitian matrix and $X{(0)}$ is non-random or random independent of $X$, are closely related to Dyson Brownian motion. Previous works have shown how an infinite hierarchy of equations satisfied by the dynamical correlations become triangular in the infinite density limit, and give rise to the complex Burgers equation for the Green's function of the corresponding one-point density function. We show how this and analogous partial differential equations, for chiral, circular and Jacobi versions of Dyson Brownian motion follow from a macroscopic hydrodynamical description involving the current density and continuity equation. The method of characteristics gives a systematic approach to solving the PDEs, and in the chiral case we show how this efficiently reclaims the characterisation of the global eigenvalue density for non-central Wishart matrices due to Dozier and Silverstein. Collective variables provide another approach to deriving the complex Burgers equation in the Gaussian case, and we show that this approach applies equally as well to chiral matrices. We relate both the Gaussian and chiral cases to the asymptotics of matrix integrals.

Summary

We haven't generated a summary for this paper yet.