Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak convergence for a stochastic exponential integrator and finite element discretization of SPDE for multiplicative \& additive noise (1507.07153v1)

Published 25 Jul 2015 in math.NA

Abstract: We consider a finite element approximation of a general semi-linear stochastic partial differential equation (SPDE) driven by space-time multiplicative and additive noise. We examine the full weak convergence rate of the exponential Euler scheme when the linear operator is self adjoint and provide preliminaries results toward the full weak convergence rate for non-self-adjoint linear operator. Key part of the proof does not rely on Malliavin calculus. Depending of the regularity of the noise and the initial solution, we found that in some cases the rate of weak convergence is twice the rate of the strong convergence. Our convergence rate is in agreement with some numerical results in two dimensions.

Summary

We haven't generated a summary for this paper yet.