Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study of Morphological Filtering Using Graph and Hypergraphs (1507.07075v1)

Published 25 Jul 2015 in cs.CV

Abstract: Mathematical morphology (MM) helps to describe and analyze shapes using set theory. MM can be effectively applied to binary images which are treated as sets. Basic morphological operators defined can be used as an effective tool in image processing. Morphological operators are also developed based on graph and hypergraph. These operators have found better performance and applications in image processing. Bino et al. [8], [9] developed the theory of morphological operators on hypergraph. A hypergraph structure is considered and basic morphological operation erosion/dilation is defined. Several new operators opening/closing and filtering are also defined on the hypergraphs. Hypergraph based filtering have found comparatively better performance with morphological filters based on graph. In this paper we evaluate the effectiveness of hypergraph based ASF on binary images. Experimental results shows that hypergraph based ASF filters have outperformed graph based ASF.

Citations (2)

Summary

We haven't generated a summary for this paper yet.