Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-objective analysis of computational models (1507.06877v1)

Published 24 Jul 2015 in cs.NE

Abstract: Computational models are of increasing complexity and their behavior may in particular emerge from the interaction of different parts. Studying such models becomes then more and more difficult and there is a need for methods and tools supporting this process. Multi-objective evolutionary algorithms generate a set of trade-off solutions instead of a single optimal solution. The availability of a set of solutions that have the specificity to be optimal relative to carefully chosen objectives allows to perform data mining in order to better understand model features and regularities. We review the corresponding work, propose a unifying framework, and highlight its potential use. Typical questions that such a methodology allows to address are the following: what are the most critical parameters of the model? What are the relations between the parameters and the objectives? What are the typical behaviors of the model? Two examples are provided to illustrate the capabilities of the methodology. The features of a flapping-wing robot are thus evaluated to find out its speed-energy relation, together with the criticality of its parameters. A neurocomputational model of the Basal Ganglia brain nuclei is then considered and its most salient features according to this methodology are presented and discussed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.