Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Organizational Chart Inference (1507.06841v1)

Published 24 Jul 2015 in cs.SI and cs.CY

Abstract: Nowadays, to facilitate the communication and cooperation among employees, a new family of online social networks has been adopted in many companies, which are called the "enterprise social networks" (ESNs). ESNs can provide employees with various professional services to help them deal with daily work issues. Meanwhile, employees in companies are usually organized into different hierarchies according to the relative ranks of their positions. The company internal management structure can be outlined with the organizational chart visually, which is normally confidential to the public out of the privacy and security concerns. In this paper, we want to study the IOC (Inference of Organizational Chart) problem to identify company internal organizational chart based on the heterogeneous online ESN launched in it. IOC is very challenging to address as, to guarantee smooth operations, the internal organizational charts of companies need to meet certain structural requirements (about its depth and width). To solve the IOC problem, a novel unsupervised method Create (ChArT REcovEr) is proposed in this paper, which consists of 3 steps: (1) social stratification of ESN users into different social classes, (2) supervision link inference from managers to subordinates, and (3) consecutive social classes matching to prune the redundant supervision links. Extensive experiments conducted on real-world online ESN dataset demonstrate that Create can perform very well in addressing the IOC problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jiawei Zhang (529 papers)
  2. Philip S. Yu (592 papers)
  3. Yuanhua Lv (6 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.