Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Indirect Inference for Discrete Choice Models (1507.06115v1)

Published 22 Jul 2015 in math.ST and stat.TH

Abstract: This paper develops and implements a practical simulation-based method for estimating dynamic discrete choice models. The method, which can accommodate lagged dependent variables, serially correlated errors, unobserved variables, and many alternatives, builds on the ideas of indirect inference. The main difficulty in implementing indirect inference in discrete choice models is that the objective surface is a step function, rendering gradient-based optimization methods useless. To overcome this obstacle, this paper shows how to smooth the objective surface. The key idea is to use a smoothed function of the latent utilities as the dependent variable in the auxiliary model. As the smoothing parameter goes to zero, this function delivers the discrete choice implied by the latent utilities, thereby guaranteeing consistency. We establish conditions on the smoothing such that our estimator enjoys the same limiting distribution as the indirect inference estimator, while at the same time ensuring that the smoothing facilitates the convergence of gradient-based optimization methods. A set of Monte Carlo experiments shows that the method is fast, robust, and nearly as efficient as maximum likelihood when the auxiliary model is sufficiently rich.

Summary

We haven't generated a summary for this paper yet.