Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Testing for Properties of Distributions (1507.05952v3)

Published 21 Jul 2015 in cs.DS, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: Given samples from an unknown distribution $p$, is it possible to distinguish whether $p$ belongs to some class of distributions $\mathcal{C}$ versus $p$ being far from every distribution in $\mathcal{C}$? This fundamental question has received tremendous attention in statistics, focusing primarily on asymptotic analysis, and more recently in information theory and theoretical computer science, where the emphasis has been on small sample size and computational complexity. Nevertheless, even for basic properties of distributions such as monotonicity, log-concavity, unimodality, independence, and monotone-hazard rate, the optimal sample complexity is unknown. We provide a general approach via which we obtain sample-optimal and computationally efficient testers for all these distribution families. At the core of our approach is an algorithm which solves the following problem: Given samples from an unknown distribution $p$, and a known distribution $q$, are $p$ and $q$ close in $\chi2$-distance, or far in total variation distance? The optimality of our testers is established by providing matching lower bounds with respect to both $n$ and $\varepsilon$. Finally, a necessary building block for our testers and an important byproduct of our work are the first known computationally efficient proper learners for discrete log-concave and monotone hazard rate distributions.

Citations (155)

Summary

We haven't generated a summary for this paper yet.