Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance (1507.05780v3)

Published 21 Jul 2015 in stat.CO, math.ST, stat.ME, and stat.TH

Abstract: We consider a Metropolis--Hastings method with proposal $\mathcal{N}(x, hG(x){-1})$, where $x$ is the current state, and study its ergodicity properties. We show that suitable choices of $G(x)$ can change these compared to the Random Walk Metropolis case $\mathcal{N}(x, h\Sigma)$, either for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails of the distribution then geometric ergodicity can be established when the target distribution for the algorithm has tails that are heavier than exponential, but that the growth rate must be carefully controlled to prevent the rejection rate approaching unity. We also illustrate that a judicious choice of $G(x)$ can result in a geometrically ergodic chain when probability concentrates on an ever narrower ridge in the tails, something that is not true for the Random Walk Metropolis.

Summary

We haven't generated a summary for this paper yet.