Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of weak solutions to a class of fourth order partial differential equations with Wasserstein gradient structure (1507.05507v1)

Published 20 Jul 2015 in math.AP

Abstract: We prove the global-in-time existence of nonnegative weak solutions to a class of fourth order partial differential equations on a convex bounded domain in arbitrary spatial dimensions. Our proof relies on the formal gradient flow structure of the equation with respect to the $L2$-Wasserstein distance on the space of probability measures. We construct a weak solution by approximation via the time-discrete minimizing movement scheme; necessary compactness estimates are derived by entropy-dissipation methods. Our theory essentially comprises the thin film and Derrida-Lebowitz-Speer-Spohn equations.

Summary

We haven't generated a summary for this paper yet.