Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Poisson color algebras of arbitrary degree (1507.05406v1)

Published 20 Jul 2015 in math-ph and math.MP

Abstract: A Poisson algebra is a Lie algebra endowed with a commutative associative product in such a way that the Lie and associative products are compatible via a Leibniz rule. If we part from a Lie color algebra, instead of a Lie algebra, a graded-commutative associative product and a graded-version Leibniz rule we get a so-called Poisson color algebra (of degree zero). This concept can be extended to any degree so as to obtain the class of Poisson color algebras of arbitrary degree. This class turns out to be a wide class of algebras containing the ones of Lie color algebras (and so Lie superalgebras and Lie algebras), Poisson algebras, graded Poisson algebras, $z$-Poisson algebras, Gerstenhaber algebras and Schouten algebras among others classes of algebras. The present paper is devoted to the study of the structure of Poisson color algebras of arbitrary degree, with restrictions neither on the dimension nor the base field.

Summary

We haven't generated a summary for this paper yet.