Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

The Population Posterior and Bayesian Inference on Streams (1507.05253v2)

Published 19 Jul 2015 in stat.ML

Abstract: Many modern data analysis problems involve inferences from streaming data. However, streaming data is not easily amenable to the standard probabilistic modeling approaches, which assume that we condition on finite data. We develop population variational Bayes, a new approach for using Bayesian modeling to analyze streams of data. It approximates a new type of distribution, the population posterior, which combines the notion of a population distribution of the data with Bayesian inference in a probabilistic model. We study our method with latent Dirichlet allocation and Dirichlet process mixtures on several large-scale data sets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.