Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic hierarchical networks (1507.05103v1)

Published 17 Jul 2015 in cs.SI, cs.DM, and math.CO

Abstract: It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and they are also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the systems modeled. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.