Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional Clique Decompositions of Dense Graphs and Hypergraphs (1507.04985v2)

Published 17 Jul 2015 in math.CO

Abstract: Our main result is that every graph $G$ on $n\ge 104r3$ vertices with minimum degree $\delta(G) \ge (1 - 1 / 104 r{3/2} ) n$ has a fractional $K_r$-decomposition. Combining this result with recent work of Barber, K\"uhn, Lo and Osthus leads to the best known minimum degree thresholds for exact (non-fractional) $F$-decompositions for a wide class of graphs~$F$ (including large cliques). For general $k$-uniform hypergraphs, we give a short argument which shows that there exists a constant $c_k>0$ such that every $k$-uniform hypergraph $G$ on $n$ vertices with minimum codegree at least $(1- c_k /r{2k-1}) n $ has a fractional $K{(k)}_r$-decomposition, where $K{(k)}_r$ is the complete $k$-uniform hypergraph on $r$ vertices. (Related fractional decomposition results for triangles have been obtained by Dross and for hypergraph cliques by Dukes as well as Yuster.) All the above new results involve purely combinatorial arguments. In particular, this yields a combinatorial proof of Wilson's theorem that every large $F$-divisible complete graph has an $F$-decomposition.

Summary

We haven't generated a summary for this paper yet.