Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Pilot Clustering in Heterogeneous Massive MIMO Networks (1507.04869v3)

Published 17 Jul 2015 in cs.IT and math.IT

Abstract: We consider the uplink of a cellular massive MIMO network. Acquiring channel state information at the base stations (BSs) requires uplink pilot signaling. Since the number of orthogonal pilot sequences is limited by the channel coherence, pilot reuse across cells is necessary to achieve high spectral efficiency. However, finding efficient pilot reuse patterns is non-trivial especially in practical asymmetric BS deployments. We approach this problem using coalitional game theory. Each BS has a few unique pilots and can form coalitions with other BSs to gain access to more pilots. The BSs in a coalition thus benefit from serving more users in their cells, at the expense of higher pilot contamination and interference. Given that a cell's average spectral efficiency depends on the overall pilot reuse pattern, the suitable coalitional game model is in partition form. We develop a low-complexity distributed coalition formation based on individual stability. By incorporating a base station intercommunication budget constraint, we are able to control the overhead in message exchange between the base stations and ensure the algorithm's convergence to a solution of the game called individually stable coalition structure. Simulation results reveal fast algorithmic convergence and substantial performance gains over the baseline schemes with no pilot reuse, full pilot reuse, or random pilot reuse pattern.

Citations (47)

Summary

We haven't generated a summary for this paper yet.