2000 character limit reached
On Accelerating the Regularized Alternating Least Square Algorithm for Tensors (1507.04721v2)
Published 16 Jul 2015 in math.NA
Abstract: In this paper, we discuss the acceleration of the regularized alternating least square (RALS) algorithm for tensor approximation. We propose a fast iterative method using a Aitken-Stefensen like updates for the regularized algorithm. Through numerical experiments, the fast algorithm demonstrate a faster convergence rate for the accelerated version in comparison to both the standard and regularized alternating least squares algorithms. In addition, we analyze the global convergence based on the Kurdyka- Lojasiewicz inequality as well as show that the RALS algorithm has a linear local convergence rate.