Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Accelerating the Regularized Alternating Least Square Algorithm for Tensors (1507.04721v2)

Published 16 Jul 2015 in math.NA

Abstract: In this paper, we discuss the acceleration of the regularized alternating least square (RALS) algorithm for tensor approximation. We propose a fast iterative method using a Aitken-Stefensen like updates for the regularized algorithm. Through numerical experiments, the fast algorithm demonstrate a faster convergence rate for the accelerated version in comparison to both the standard and regularized alternating least squares algorithms. In addition, we analyze the global convergence based on the Kurdyka- Lojasiewicz inequality as well as show that the RALS algorithm has a linear local convergence rate.

Summary

We haven't generated a summary for this paper yet.