Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indirect multivariate response linear regression (1507.04610v1)

Published 16 Jul 2015 in stat.ME

Abstract: We propose a new class of estimators of the multivariate response linear regression coefficient matrix that exploits the assumption that the response and predictors have a joint multivariate Normal distribution. This allows us to indirectly estimate the regression coefficient matrix through shrinkage estimation of the parameters of the inverse regression, or the conditional distribution of the predictors given the responses. We establish a convergence rate bound for estimators in our class and we study two examples. The first example estimator exploits an assumption that the inverse regression's coefficient matrix is sparse. The second example estimator exploits an assumption that the inverse regression's coefficient matrix is rank deficient. These estimators do not require the popular assumption that the forward regression coefficient matrix is sparse or has small Frobenius norm. Using simulation studies, we show that our example estimators outperform relevant competitors for some data generating models.

Summary

We haven't generated a summary for this paper yet.