Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Permutation Group Theory in Reversible Logic Synthesis (1507.04309v5)

Published 15 Jul 2015 in cs.ET

Abstract: The paper discusses various applications of permutation group theory in the synthesis of reversible logic circuits consisting of Toffoli gates with negative control lines. An asymptotically optimal synthesis algorithm for circuits consisting of gates from the NCT library is described. An algorithm for gate complexity reduction, based on equivalent replacements of gates compositions, is introduced. A new approach for combining a group-theory-based synthesis algorithm with a Reed-Muller-spectra-based synthesis algorithm is described. Experimental results are presented to show that the proposed synthesis techniques allow a reduction in input lines count, gate complexity or quantum cost of reversible circuits for various benchmark functions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.