Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recollements in stable $\infty$-categories (1507.03913v2)

Published 14 Jul 2015 in math.CT and math.AG

Abstract: We develop the theory of recollements in a stable $\infty$-categorical setting. In the axiomatization of Beilinson, Bernstein and Deligne, recollement situations provide a generalization of Grothendieck's "six functors" between derived categories. The adjointness relations between functors in a recollement $\mathbf{D}0\leftrightarrow \mathbf{D} \leftrightarrow \mathbf{D}1$ induce a "recoll\'ee" $t$-structure $\mathfrak{t}_0\uplus\mathfrak{t}1$ on $\mathbf{D}$ , given $t$-structures $\mathfrak{t}_0,\mathfrak{t}_1$ on $\mathbf{D}0, \mathbf{D}1$. Such a classical result, well-known in the setting of triangulated categories, is recasted in the setting of stable $\infty$-categories and the properties of the associated ($\infty$-categorical) factorization systems are investigated. In the geometric case of a stratified space, various recollements arise, which "interact well" with the combinatorics of the intersections of strata to give a well-defined, associative $\uplus$ operation. From this we deduce a generalized associative property for $n$-fold gluing $\mathfrak{t}_0\uplus\cdots\uplus \mathfrak{t}_n$, valid in any stable $\infty$-category.

Summary

We haven't generated a summary for this paper yet.