2000 character limit reached
Zero-one law for directional transience of one-dimensional random walks in dynamic random environments (1507.03617v2)
Published 13 Jul 2015 in math.PR
Abstract: We prove the trichotomy between transience to the right, transience to the left and recurrence of one-dimensional nearest-neighbour random walks in dynamic random environments under fairly general assumptions, namely: stationarity under space-time translations, ergodicity under spatial translations, and a mild ellipticity condition. In particular, the result applies to general uniformly elliptic models and also to a large class of non-uniformly elliptic cases that are i.i.d. in space and Markovian in time. An immediate consequence is the recurrence of models that are symmetric with respect to reflection through the origin.