Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Right unimodal and bimodal singularities in positive characteristic (1507.03554v1)

Published 13 Jul 2015 in math.AG

Abstract: The problem of classification of real and complex singularities was initiated by Arnol'd in the sixties who classified simple, unimodal and bimodal w.r.t. right equivalence. The classification of right simple singularities in positive characteristic was achieved by Greuel and the author in 2014. In the present paper we classify right unimodal and bimodal singularities in positive characteristic by giving explicit normal forms. Moreover we completely determine all possible adjacencies of simple, unimodal and bimodal singularities. As an application we prove that, for singularities of right modality at most 2, the $\mu$-constant stratum is smooth and its dimension is equal to the right modality. In contrast to the complex analytic case, there are, for any positive characteristic, only finitely many 1-dimensional (resp. 2-dimensional) families of right class of unimodal (resp. bimodal) singularities. We show that for fixed characteristic $p>0$ of the ground field, the Milnor number of $f$ satisfies $\mu(f)\leq 4p$, if the right modality of $f$ is at most 2.

Summary

We haven't generated a summary for this paper yet.