Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy adaptive walks on a correlated fitness landscape (1507.03511v2)

Published 13 Jul 2015 in q-bio.PE and cond-mat.stat-mech

Abstract: We study adaptation of a haploid asexual population on a fitness landscape defined over binary genotype sequences of length $L$. We consider greedy adaptive walks in which the population moves to the fittest among all single mutant neighbors of the current genotype until a local fitness maximum is reached. The landscape is of the rough mount Fuji type, which means that the fitness value assigned to a sequence is the sum of a random and a deterministic component. The random components are independent and identically distributed random variables, and the deterministic component varies linearly with the distance to a reference sequence. The deterministic fitness gradient $c$ is a parameter that interpolates between the limits of an uncorrelated random landscape ($c = 0$) and an effectively additive landscape ($c \to \infty$). When the random fitness component is chosen from the Gumbel distribution, explicit expressions for the distribution of the number of steps taken by the greedy walk are obtained, and it is shown that the walk length varies non-monotonically with the strength of the fitness gradient when the starting point is sufficiently close to the reference sequence. Asymptotic results for general distributions of the random fitness component are obtained using extreme value theory, and it is found that the walk length attains a non-trivial limit for $L \to \infty$, different from its values for $c=0$ and $c = \infty$, if $c$ is scaled with $L$ in an appropriate combination.

Summary

We haven't generated a summary for this paper yet.