Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Coloring Game on Planar Graphs with Large Girth, by a result on Sparse Cactuses (1507.03195v1)

Published 12 Jul 2015 in cs.DM and math.CO

Abstract: We denote by $\chi$ g (G) the game chromatic number of a graph G, which is the smallest number of colors Alice needs to win the coloring game on G. We know from Montassier et al. [M. Montassier, P. Ossona de Mendez, A. Raspaud and X. Zhu, Decomposing a graph into forests, J. Graph Theory Ser. B, 102(1):38-52, 2012] and, independantly, from Wang and Zhang, [Y. Wang and Q. Zhang. Decomposing a planar graph with girth at least 8 into a forest and a matching, Discrete Maths, 311:844-849, 2011] that planar graphs with girth at least 8 have game chromatic number at most 5. One can ask if this bound of 5 can be improved for a sufficiently large girth. In this paper, we prove that it cannot. More than that, we prove that there are cactuses CT (i.e. graphs whose edges only belong to at most one cycle each) having $\chi$ g (CT) = 5 despite having arbitrary large girth, and even arbitrary large distance between its cycles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.