Papers
Topics
Authors
Recent
2000 character limit reached

Approximation and Schur properties for Lipschitz free spaces over compact metric spaces

Published 9 Jul 2015 in math.FA | (1507.02701v3)

Abstract: We prove that for any separable Banach space $X$, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to $X$. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that there exists an uncountable family of topologically equivalent distances on the Cantor space whose free spaces are pairwise non isomorphic. We also prove that the free space over a countable compact metric space has the Schur property. These results answer questions by G. Godefroy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.