Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FAQ-based Question Answering via Word Alignment (1507.02628v1)

Published 9 Jul 2015 in cs.CL

Abstract: In this paper, we propose a novel word-alignment-based method to solve the FAQ-based question answering task. First, we employ a neural network model to calculate question similarity, where the word alignment between two questions is used for extracting features. Second, we design a bootstrap-based feature extraction method to extract a small set of effective lexical features. Third, we propose a learning-to-rank algorithm to train parameters more suitable for the ranking tasks. Experimental results, conducted on three languages (English, Spanish and Japanese), demonstrate that the question similarity model is more effective than baseline systems, the sparse features bring 5% improvements on top-1 accuracy, and the learning-to-rank algorithm works significantly better than the traditional method. We further evaluate our method on the answer sentence selection task. Our method outperforms all the previous systems on the standard TREC data set.

Citations (43)

Summary

We haven't generated a summary for this paper yet.