Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A piezoelectric Euler-Bernoulli beam with dynamic boundary control: stability and dissipative FEM (1507.02542v1)

Published 9 Jul 2015 in math.AP

Abstract: We present a mathematical and numerical analysis on a control model for the time evolution of a multi-layered piezoelectric cantilever with tip mass and moment of inertia, as developed by Kugi and Thull [31]. This closed-loop control system consists of the inhomogeneous Euler-Bernoulli beam equation coupled to an ODE system that is designed to track both the position and angle of the tip mass for a given reference trajectory. This dynamic controller only employs first order spatial derivatives, in order to make the system technically realizable with piezoelectric sensors. From the literature it is known that it is asymptotically stable [31]. But in a refined analysis we first prove that this system is not exponentially stable. In the second part of this paper, we construct a dissipative finite element method, based on piecewise cubic Hermitian shape functions and a Crank-Nicolson time discretization. For both the spatial semi-discretization and the full x - t-discretization we prove that the numerical method is structure preserving, i.e. it dissipates energy, analogous to the continuous case. Finally, we derive error bounds for both cases and illustrate the predicted convergence rates in a simulation example.

Summary

We haven't generated a summary for this paper yet.