Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility (1507.02410v1)

Published 9 Jul 2015 in math-ph, math.AP, math.MP, and math.NA

Abstract: In this work, the sharp interface limit of the degenerate Cahn-Hilliard equation (in two space dimensions) with a polynomial double well free energy and a quadratic mobility is derived via a matched asymptotic analysis involving exponentially large and small terms and multiple inner layers. In contrast to some results found in the literature, our analysis reveals that the interface motion is driven by a combination of surface diffusion flux proportional to the surface Laplacian of the interface curvature and an additional contribution from nonlinear, porous-medium type bulk diffusion, For higher degenerate mobilities, bulk diffusion is subdominant. The sharp interface models are corroborated by comparing relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the phase field model.

Summary

We haven't generated a summary for this paper yet.