Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark (1507.02321v1)

Published 8 Jul 2015 in cs.DB

Abstract: Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.

Citations (17)

Summary

We haven't generated a summary for this paper yet.