Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Document Summarization via Discriminative Summary Reranking (1507.02062v1)

Published 8 Jul 2015 in cs.CL

Abstract: Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and even a summarization model with good overall performance may produce low-quality summaries for some document sets. On the contrary, a baseline summarization model may produce high-quality summaries for some document sets. Based on the above observations, we treat the summaries produced by different summarization models as candidate summaries, and then explore discriminative reranking techniques to identify high-quality summaries from the candidates for difference document sets. We propose to extract a set of candidate summaries for each document set based on an ILP framework, and then leverage Ranking SVM for summary reranking. Various useful features have been developed for the reranking process, including word-level features, sentence-level features and summary-level features. Evaluation results on the benchmark DUC datasets validate the efficacy and robustness of our proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaojun Wan (99 papers)
  2. Ziqiang Cao (34 papers)
  3. Furu Wei (291 papers)
  4. Sujian Li (83 papers)
  5. Ming Zhou (182 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.