Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries (1507.02039v2)

Published 8 Jul 2015 in math.CA and math.AP

Abstract: Let $\Omega \subset \mathbb{R}{n+1}$, $n\geq 2$, be 1-sided NTA domain (aka uniform domain), i.e. a domain which satisfies interior Corkscrew and Harnack Chain conditions, and assume that $\partial\Omega$ is $n$-dimensional Ahlfors-David regular. We characterize the rectifiability of $\partial\Omega$ in terms of the absolute continuity of surface measure with respect to harmonic measure. We also show that these are equivalent to the fact that $\partial\Omega$ can be covered $\mathcal{H}n$-a.e. by a countable union of portions of boundaries of bounded chord-arc subdomains of $\Omega$ and to the fact that $\partial\Omega$ possesses exterior corkscrew points in a qualitative way $\mathcal{H}n$-a.e. Our methods apply to harmonic measure and also to elliptic measures associated with real symmetric second order divergence form elliptic operators with locally Lipschitz coefficients whose derivatives satisfy a natural qualitative Carleson condition.

Summary

We haven't generated a summary for this paper yet.