Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved bound on the fraction of correctable deletions (1507.01719v2)

Published 7 Jul 2015 in cs.IT, cs.DM, math.CO, and math.IT

Abstract: We consider codes over fixed alphabets against worst-case symbol deletions. For any fixed $k \ge 2$, we construct a family of codes over alphabet of size $k$ with positive rate, which allow efficient recovery from a worst-case deletion fraction approaching $1-\frac{2}{k+\sqrt k}$. In particular, for binary codes, we are able to recover a fraction of deletions approaching $1/(\sqrt 2 +1)=\sqrt 2-1 \approx 0.414$. Previously, even non-constructively the largest deletion fraction known to be correctable with positive rate was $1-\Theta(1/\sqrt{k})$, and around $0.17$ for the binary case. Our result pins down the largest fraction of correctable deletions for $k$-ary codes as $1-\Theta(1/k)$, since $1-1/k$ is an upper bound even for the simpler model of erasures where the locations of the missing symbols are known. Closing the gap between $(\sqrt 2 -1)$ and $1/2$ for the limit of worst-case deletions correctable by binary codes remains a tantalizing open question.

Citations (51)

Summary

We haven't generated a summary for this paper yet.