Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds (1507.01542v3)

Published 6 Jul 2015 in stat.ME

Abstract: Assessing the causal effects of interventions on ordinal outcomes is an important objective of many educational and behavioral studies. Under the potential outcomes framework, we can define causal effects as comparisons between the potential outcomes under treatment and control. However, unfortunately, the average causal effect, often the parameter of interest, is difficult to interpret for ordinal outcomes. To address this challenge, we propose to use two causal parameters, which are defined as the probabilities that the treatment is beneficial and strictly beneficial for the experimental units. However, although well-defined for any outcomes and of particular interest for ordinal outcomes, the two aforementioned parameters depend on the association between the potential outcomes, and are therefore not identifiable from the observed data without additional assumptions. Echoing recent advances in the econometrics and biostatistics literature, we present the sharp bounds of the aforementioned causal parameters for ordinal outcomes, under fixed marginal distributions of the potential outcomes. Because the causal estimands and their corresponding sharp bounds are based on the potential outcomes themselves, the proposed framework can be flexibly incorporated into any chosen models of the potential outcomes, and are directly applicable to randomized experiments, unconfounded observational studies, and randomized experiments with noncompliance. We illustrate our methodology via numerical examples and three real-life applications related to educational and behavioral research.

Summary

We haven't generated a summary for this paper yet.