Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the moment distance of Poisson processes (1507.01048v9)

Published 3 Jul 2015 in cs.DM

Abstract: Consider the distance between two i.i.d. and independent Poisson processes with arrival rate $\lambda>0$ and respective arrival times $X_1,X_2,\dots$ and $Y_1,Y_2,\dots$ on a line. We give a closed analytical formula for the %expected distance to the power $a$ $\E{|X_{k+r}-Y_k|a}, $ for any integer $k\ge 1, r\ge 0$ and $a\ge 1.$ The expected difference of the arrival times to the power $a$ between two i.i.d. and independent Poisson processes we represent as the combination of the Pochhammer polynomials. Especially, for $r=0$ and any positive integer $a,$ the following identity is valid $$ \E{|X_k-Y_k|a}=\frac{a!}{\lambdaa}\frac{\Gamma\left(\frac{a}{2}+k\right)}{\Gamma(k)\Gamma\left(\frac{a}{2}+1\right)}, $$ where $\Gamma(z)$ is Gamma function.

Citations (10)

Summary

We haven't generated a summary for this paper yet.