Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapped Thompson Sampling and Deep Exploration (1507.00300v1)

Published 1 Jul 2015 in stat.ML and cs.LG

Abstract: This technical note presents a new approach to carrying out the kind of exploration achieved by Thompson sampling, but without explicitly maintaining or sampling from posterior distributions. The approach is based on a bootstrap technique that uses a combination of observed and artificially generated data. The latter serves to induce a prior distribution which, as we will demonstrate, is critical to effective exploration. We explain how the approach can be applied to multi-armed bandit and reinforcement learning problems and how it relates to Thompson sampling. The approach is particularly well-suited for contexts in which exploration is coupled with deep learning, since in these settings, maintaining or generating samples from a posterior distribution becomes computationally infeasible.

Citations (97)

Summary

We haven't generated a summary for this paper yet.