Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming (1507.00228v5)

Published 1 Jul 2015 in math.OC

Abstract: Let a polyhedral convex set be given by a finite number of linear inequalities and consider the problem to project this set onto a subspace. This problem, called polyhedral projection problem, is shown to be equivalent to multiple objective linear programming. The number of objectives of the multiple objective linear program is by one higher than the dimension of the projected polyhedron. The result implies that an arbitrary vector linear program (with arbitrary polyhedral ordering cone) can be solved by solving a multiple objective linear program (i.e. a vector linear program with the standard ordering cone) with one additional objective space dimension.

Summary

We haven't generated a summary for this paper yet.