Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Inference and Learning Mixed Graphical Models (1507.00039v1)

Published 30 Jun 2015 in stat.ML and cs.LG

Abstract: This thesis studies two problems in modern statistics. First, we study selective inference, or inference for hypothesis that are chosen after looking at the data. The motiving application is inference for regression coefficients selected by the lasso. We present the Condition-on-Selection method that allows for valid selective inference, and study its application to the lasso, and several other selection algorithms. In the second part, we consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. We provide conditions under which our estimator is model selection consistent in the high-dimensional regime.

Citations (1)

Summary

We haven't generated a summary for this paper yet.