Quasilinear elliptic problems with cylindrical singularities and multiple critical nonlinearities: existence, regularity, nonexistence (1506.09152v1)
Abstract: This work deals with existence of solutions for the class of quasilinear elliptic problems with cylindrical singularities and multiple critical nonlinearities that can be written in the form \begin{align*} -\operatorname{div}\left[\frac{|\nabla u|{p-2}}{|y|{ap}}\nabla u\right] -\mu\,\frac{u{p-1}}{|y|{p(a+1)}} = \frac{u{p(a,b)-1}}{|y|{bp^(a,b)}} + \frac{u{p(a,c)-1}}{|y|{cp^(a,c)}}, \qquad (x,y) \in \mathbb{R}{N-k}\times\mathbb{R}k. \end{align*} The existence of a positive, weak solution $u \in \mathcal{D}a{1,p}(\mathbb{R}N\backslash{|y|=0})$ is proved with the help of the mountain pass theorem. We also prove a regularity result, that is, using Moser's iteration scheme we show that $u \in L{\operatorname{loc}}{\infty}(\Omega)$ for domains $\Omega \subset \mathbb{R}{N-k}\times\mathbb{R}{k}\backslash { |y|=0 }$ not necessarily bounded. Finally we show that if $ u \in \mathcal{D}a{1,p}(\mathbb{R}N\backslash{|y|=0}) $ is a weak solution to the related problem \begin{align*} -\operatorname{div}\left[\frac{|\nabla u|{p-2}}{|y|{ap}}\nabla u\right] -\mu\,\frac{|u|{p-2}u}{|y|{p(a+1)}} = \frac{|u|{q-2}u}{|y|{bp*(a,b)}} + \frac{|u|{p(a,c)-2}u}{|y|{cp^(a,c)}}, \qquad (x,y) \in \mathbb{R}{N-k}\times\mathbb{R}k, \end{align*} then $ u \equiv 0 $ when either $ 1 < q < p*(a,b) $, or $ q > p*(a,b) $ and $u \in L{bp*(a,b)/q, \operatorname{loc}}{q} (\mathbb{R}N\backslash{|y|=0}) \cap L_{\mathrm{loc}}{\infty}(\mathbb{R}{N-k}\times \mathbb{R}{k} \backslash { |y| = 0})$. This nonexistence of nontrivial solution is proved by using a Pohozaev-type identity.